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Abstract
Momentum density distributions determined by the analysis of positron annihilation radiation in
embedded nano Cu clusters in iron were studied by using a first-principles method. A
momentum smearing effect originated from the positron localization in the embedded clusters is
observed. The smearing effect is found to scale linearly with the cube root of the cluster’s
volume, indicating that the momentum density techniques of positron annihilation can be
employed to explore the atomic-scaled microscopic structures of a variety of impurity
aggregations in materials.

1. Introduction

Positron annihilation is a well-established technique to study
vacancies and their aggregations in solids, because positrons
can be sensitively trapped by the vacancy-type defects [1, 2].
Recently, it was found [3–10] that positrons can be trapped by
non-vacancy-type nanoparticles embedded in a host material
when the particles’ positron affinities [2, 11–13] are higher
than those of the host. The trapped positrons annihilate with
the electrons of the nanoparticles and thus bring site-selective
information on the microscopic and electronic structures of
the particles through two emitted γ photons. By measuring
the angular correlation distribution between two γ photons
(angular correlation of annihilation radiation, ACAR) [1],
the momentum density distributions of positron annihilation
radiation in nanoparticles are then obtained.

A promising application of nanoparticle-trapped positrons
is to study the microscopic and electronic structures of
quantum dots embedded in semiconductors. A theoretical
study by Saniz et al [14] predicted that, when an electron
gas is confined by a spherical potential, its momentum density
distribution will differ from the Fermi sphere of a free electron
gas and the sharp difference between the electron occupations
outside and inside the Fermi sphere will be smeared out. They

found that the smearing effect scales linearly with the inverse
of the radius of the confinement potential well (i.e. ∝1/r ).
Weber et al [15] measured the momentum density distributions
of the confined electrons in CdSe quantum dots by the positron
coincidence Doppler broadening technique [16, 17]; a different
scaling behavior (∝1/r 2) was observed and the discrepancy
between the theoretical and experimental scaling indexes was
attributed to the lattice effects of the quantum dots.

In this work, we tried to clarify the above issue by
employing first-principles calculations of positron annihilation
to a more realistic case of Cu precipitates in dilute FeCu
alloys. Because the dilute FeCu alloys are the model alloys
of the reactor pressure vessel (RPV) steels, the systems under
study are of importance to the nuclear energy industry [18].
In particular, it has been known for a long time that the Cu
precipitates play an important role in the embrittlement of the
RPV steels [18, 19]. Therefore, identification and monitoring
of nano Cu precipitates in the RPV steels are critical for safe
operation of the nuclear reactors.

Previous works [3, 19, 20] have shown that positrons are
indeed trapped by the Cu precipitates in the dilute FeCu alloys.
However, in these alloy systems, both the Cu precipitates and
the iron host are metallic so that neither electron confinement
nor electron-confinement-induced Fermi surface smearing is
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expected. Could the trapped positrons find applications in these
metallic systems? We approach the issue here by calculating
and analyzing the ACAR distributions of the trapped positrons
in the bcc Cu clusters embedded in an iron matrix. We
demonstrate that, due to the sampling effect of the trapped
positrons, there is a size-dependent smearing of the momentum
density distributions. The smearing effect is observed to
scale linearly with (1/�)1/3, where � is the cluster’s volume,
indicating that the positron annihilation technique can be
employed as a powerful tool to study the metallic quantum dots
and precipitates in alloys.

2. Calculation

To simulate the embedded Cu clusters in iron, we generated
coherent Cu clusters [28], Cu6, Cu15, Cu27 and Cu59, in an
128-site supercell of bcc ferromagnetic Fe (figure 1). In
the present work the experimental lattice parameter of bcc
ferromagnetic iron, a = 5.42a0 (a0 is the Bohr radius) [29],
is employed. The geometric and electronic structures of
the simulated systems were optimized by using the iterative
minimization technique [21, 22]. In the calculations, we
employed a plane-wave basis set with a cutoff kinetic energy
of 237.5 eV to expand the wavefunctions of the electrons and
positron. The electron–ion and positron–ion interactions are
represented by, respectively, the ultrasoft pseudopotential [23]
and the full potential using the frozen core approximation.
The electron–electron correlation was calculated within the
generalized gradient approximation [24] and the positron–
electron correlation effects (i.e. the correlation potential and
the enhancement factor) were calculated based on the two-
component density functional theory [11, 25] within the local
density approximation (details about the method can be found
in our previous publication [26]). In addition, we employed a
3 × 3 × 3 Monkhorst–Pack type k-point mesh [27] to perform
the first Brillouin zone (FBZ) integration in the calculation of
the self-consistent electron charge density and ferromagnetism
of iron was fully included in the present calculations. For the
positron calculation (both the positron wavefunction and the
positron charge density), only the � point is employed.

After the electron’s and positron’s wavefunctions are
obtained, the 3D momentum density distribution of the
positron–electron pair, ρ(p), is calculated as

ρ(p) =
∑

ik

f (εik)

∣∣∣∣
∫

e−iprψ+0(r)ψik(r)
√

g(r)dr

∣∣∣∣
2

. (1)

In the above equation, ψik(r) is the wavefunction of
the electron state with the band index i and the crystal
momentum k (k is within the FBZ), f is its occupation
number and p = k + G (G is the reciprocal lattice)
is the momentum of the positron–electron pair associated
with the crystal momentum k. ψ+0(r) is the positron
wavefunction at the � point and g(r) is the enhancement
factor describing the many-body effect of positron–electron
correlation [11]. By projecting the calculated 3D momentum
density distribution of the positron–electron pair ρ(p) along
a chosen axis pz , the experimental two-dimensional angular

Figure 1. Structures of simulated Cu clusters embedded in the iron
matrix.

correlation of positron annihilation radiation (2D-ACAR)
spectrum can be simulated as ρ(px, py) = ∫

ρ(p)dpz . For
comparison, we also calculated the positron lifetime (τ ),
which is the inverse of the positron annihilation rate (λ)
given by λ = πr 2

0 c
∫

n−(r)n+(r)g(r)dr, where n−(r) =∑
ik f (εik)|ψik(r)|2 is the electron density and n+(r) =

|ψ+0(r)|2 is the positron density.

3. Results and discussion

We start our discussions from the calculated positron states.
The positron wavefunctions in the present calculations are
found to be similar to our previous work [28, 30]. It is
confirmed that even the smallest cluster in this work, Cu6,
can trap the positron, although there are considerable positron
densities spilling out of the cluster, so that the positron has a
certain probability to annihilate with the electrons of the iron
matrix. However, since the positron annihilation lifetimes in
bcc Cu (106 ps) and bcc Fe (104 ps) are very similar [28], the
calculated lifetimes of the trapped positrons at the Cu clusters
are nearly constant and are insensitive to details of the trapping
centers.

However, the momentum density distributions of positron
annihilation radiation are found to be very sensitive to the
embedded Cu clusters. As an example, figure 2 presents the
2D projection of the calculated ACAR distributions (i.e. 2D-
ACAR) along the [001] direction for the largest (Cu59) and
the smallest (Cu6) clusters of this work, in comparison with
that of bcc Cu bulk. Remarkable changes are observed when
the positron annihilation site varies from the bcc Cu bulk to
the Cu6 cluster. For the bcc Cu bulk, the calculation shows
that its Fermi surface is nearly spherical except for 12 necks
connecting to the {110} Brillouin zone boundaries at the highly
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Figure 2. Contour plots of positron 2D-ACAR distributions projected along the [001] direction for bcc Cu bulk (left), embedded Cu59 cluster
(middle) and embedded Cu6 cluster (right). The contour-line interval is 1/21 of the maximum momentum density. Thin lines and characters
denote the projections of the first Brillouin zone and the highly symmetric points, respectively.

symmetric N points. Therefore, the 2D-ACAR distribution of
bcc Cu has higher momentum densities at the projections of N
points [4, 28, 30] and drops rapidly outside the Fermi surface
(kF ≈ 5.18 mrad) [28] (figure 2). These characteristic features
are visible in the 2D-ACAR distribution for the Cu59 cluster
but are gradually smeared out when the cluster size is further
reduced to Cu6.

The above 2D-ACAR distributions are contributed from
the positron annihilations with both the electrons of Cu
clusters and the electrons of the Fe matrix due to the positron
density spilling out of the clusters. As the spilling positron
density increases with reducing the size of the Cu cluster,
the observed enhancement of the smearing effect may just
represent a decrease of positron annihilation probability with
the electrons of the Cu clusters. To clarify this issue, the
ACAR contributions from the positron annihilations with the
Fe matrix have to be subtracted.

Unfortunately, because the plane-wave basis set employed
in the present calculations is non-local and is defined over the
whole supercell, it is difficult to unambiguously decompose
the positron annihilation rate. For this reason, we employed
the superimposed atomic charge scheme proposed by Puska
et al [31, 11], in which the positron annihilation rates with the
electrons of Cu/Fe are explicitly

λCu/Fe = πr 2
0 c

∫
nCu/Fe

− (r)n+(r)g(r)dr, (2)

where nCu/Fe− (r) = ∑
I ρ

Cu/Fe
at (r − RI ) is the superimposition

of the atomic charge (ρCu/Fe
at ) specific to Cu or Fe, and the

enhancement factor g(r) depends on the total charge [=
nCu− (r) + nFe− (r)]. The positron lifetimes calculated as the
inverse of the total annihilation rate [τ = 1/(λCu +λFe)] based
on this scheme differ only slightly from those based on the
plane-wave scheme (by less than 1 ps). The fraction of spilling
positron annihilation with the Fe electrons is then determined
as fFe = λFe/(λCu + λFe) and its contribution to the positron
2D-ACAR, fFeρFe(p), is subtracted from the calculated total

Figure 3. Cross sections of normalized 2D-ACAR distributions for
the embedded Cu clusters after the spilling positron annihilations in
the Fe matrix are subtracted.

2D-ACAR (here ρFe(p) is the calculated 2D-ACAR for bcc
ferromagnetic Fe bulk and we assume that the momentum
distribution of the spilling positron annihilation with the Fe
electrons is similar to that of bcc ferromagnetic Fe bulk).

Figure 3 presents the decomposed 2D-ACAR cross
sections along the [100] and [110] directions after the Fe
contribution is subtracted. From figure 3, we see clearly that
there indeed is a momentum smearing effect around kF and the
effect is enhanced with reducing the Cu cluster size. Since
both the Cu clusters and the Fe matrix are metallic, there is
no confined electron in the present alloys and the observed
momentum smearing effect cannot be attributed to the electron
confinement; instead, it is originated from the trapped positron
sampling the local electronic structures of the Cu clusters,
somewhat similar to the effect of a confined positron in free
volumes discussed by Calloni et al [32]. It can be understood
that, when the positron annihilation site changes from the bcc
Cu bulk to the Cu6 cluster, the positron-sampled momentum
density distribution is subjected to a variation from crystal-like
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Figure 4. Momentum smearing parameter (σ ) versus the cube root
of Cu cluster’s volume (�1/3). The error bars of the momentum
smearing parameters are smaller than their point size.

to atom-like, namely, the rapid drop of the momentum density
around kF observed in the bulk will be smeared out, as shown
in figure 3.

To quantitatively describe the above momentum smearing
effect, we tried to reconstruct the decomposed 2D-ACAR for
the Cu clusters [ρ(p)] by convoluting the 2D-ACAR for the
bulk [ρCu(p)] with a 2D circular Gaussian function g(p) =
(1/2πσ 2)e−p2/2σ 2

and employed σ as the momentum smearing
parameter to characterize the effect. The best fit to σ is then
determined by minimizing the object function

φ(σ) =
∫ ∣∣∣∣ρ(p)−

∫
g(p − q)ρCu(q)dq

∣∣∣∣
2

dp, (3)

within the momentum region of p � 24 mrad and the obtained
σ ’s are 1.020±0.007, 1.265±0.008, 1.525±0.007 and 1.780±
0.005 mrad, for Cu6, Cu15, Cu27, and Cu59, respectively.

Next, we verify if the calculated momentum smearing has
some scaling behavior with the cluster size. As the shapes
of the smaller clusters (Cu6 and Cu15) differ considerably
from a sphere, we here choose the volume � (=NCuυCu,
υCu = a3/2 is the average volume of a Cu atom in the Fe
matrix) instead of the radius to characterize the cluster. It
is observed that there is a good linear correlation between
σ and �1/3, i.e. σ = 0.055 + 1.53/�1/3 (in atomic unit
a−1

0 (=7.297 mrad)) (figure 4), indicating that the momentum
smearing effect scales linearly with the cube root of the Cu
cluster’s volume. This result is consistent with the theory of
Saniz et al [14], although the smearing effect discussed here
is of a different but more general origination, i.e. by the
trapped positrons sampling the local electronic structure of the
embedded cluster. Therefore, the present work demonstrates
that the momentum distributions in the nano particles sampled
by positrons can be employed to study the microstructures of a
variety of impurity aggregations in materials.

Finally, it is noteworthy that the scaling relationship
obtained here cannot be extrapolated to the very large clusters
as � → ∞, σ � 0 (equation (3)). The comparisons between
the reconstructed 2D-ACAR distributions and the decomposed

ones for the embedded Cu clusters in bcc ferromagnetic Fe
indicate that these computational errors are less than 5%. The
results presented in figure 4 show that the good linear scaling
relationship (equation (3)) is valid at least up to the cluster size
of 27 atoms.
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